该资源由用户: 东风谷妮子 上传 举报不良内容
The central idea of Hebbian Learning and Negative Feedback Networks is that artificial neural networks using negative feedback of activation can use simple Hebbian learning to self-organise so that they uncover interesting structures in data sets. Two variants are considered: the first uses a single stream of data to self-organise. By changing the learning rules for the network, it is shown how to perform Principal Component Analysis, Exploratory Projection Pursuit, Independent Component Analysis, Factor Analysis & a variety of topology preserving mappings for such data sets. The second variants use two input data streams on which they self-organise. In their basic form, these networks are shown to perform Canonical Correlation Analysis, the statistical technique which finds those filters onto which projections of the two data streams have greatest correlation. The book encompasses a wide range of real experiments & displays how the approaches it formulates can be applied to the analysis of real problems.
尊敬的读者:
欢迎您访问我们的网站。本站的初衷是为大家提供一个共享学习资料、交换知识的平台。每位用户都可以将文件上传至网盘并分享。
然而,随着用户上传的资料增多,我们发现部分不宜或版权问题的书籍被分享到了本站。
为此,我们已经关闭了分享入口,并进行了多次书籍审查,但仍有部分内容未能彻底审查到位。
在此,我们恳请广大读者与我们共同监督,如发现任何不宜内容,请 点击此处 进行举报,我们会第一时间处理并下架相关内容。
希望我们能共建一个文明社区!感谢您的理解与支持!